eguruchela

List of formulas related to simple Harmonic Motion


Spring

K: spring constant (N/m), s: displacement (m), ω: angular velocity (rad/s), T: time period, m: mass of the object, A: amplitude

$$ s = Acos(\omega t + \phi) $$ $$ \omega = \sqrt{ \frac{k}{m}} $$ $$ T = \frac{1}{f} = \frac{2 \pi}{\omega} = 2 \pi \sqrt{ \frac{m}{k}} $$

Spring


Springs in Series

k: spring constant of the system, T: time period of the system

$$ \frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} + ... + \frac{1}{k_n} $$ $$ T^2 = T_1 ^2 + T_2 ^2$$

Springs In Series


Springs in Parallel

$$ k = k_1 + k_2 $$ $$ \frac{1}{T^2} = \frac{1}{T_1 ^2} + \frac{1}{T_2 ^2} $$

Springs in Parallel


Simple Pendulum

ω: angular velocity (rad/s), T: time period , αo: angle at amplitude, A: amplitude, l: length of the pendulum

$$ \omega = \frac{g}{l} $$ $$ T = \frac{2 \pi}{\omega} = 2 \pi \frac{l}{g} $$ $$ \alpha _o = \frac{A}{l} $$

Simple Pendulum


Motion Equations

S: displacement, α: angle, v: velocity, T: strength on the rod

$$ s = Acos(\omega t + \phi) $$ $$ \alpha = \alpha _o cos(\omega t + \phi) $$ $$ v = \sqrt{2gl(cos \alpha - cos \alpha _o)} $$ $$ T = mg(3 cos \alpha - 2 cos \alpha _o) $$

Motion Equations


Energy

Ep: potential energy, Ek: kinetic energy, E: mechanical energy

$$ E_p = mgl(1 - cos \alpha) $$ $$ E_k = \frac{1}{2}m v^2 $$ $$ E = E_p + E_k = \frac{1}{2} mgl \alpha _o ^2 $$

Change of Period Following The Change of The Temperature

Α: coefficient of linear expansion of the rod

$$ \Delta t^o = t_2 ^o - t_1 ^o $$ $$ \frac{\Delta T}{T} = \frac{\alpha}{2} \Delta t^o $$

Change of Period Following The Change of The Height

h: height of the pendulum, R: earth’s radius

$$ \frac{\Delta T}{T} = \frac{h}{R} $$

Pendulum

I: moment of inertia, ω: angular velocity, m: mass of bob, d: OG, T: time period

$$ \omega = \sqrt {\frac{mgd}{I}} $$ $$ T = \frac{2 \pi}{\omega} = 2 \pi \frac{I}{mgd} $$

Pendulum