eguruchela

Melting and boiling points


The melting point (or, rarely, liquefaction point) of a solid is the temperature at which it changes state from solid to liquid at atmospheric pressure. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is referred to as the freezing point or crystallization point.

Because of the ability of some substances to supercool, the freezing point is not considered as a characteristic property of a substance. When the "characteristic freezing point" of a substance is determined, in fact the actual methodology is almost always "the principle of observing the disappearance rather than the formation of ice", that is, the melting point.

Examples

For most substances, melting and freezing points are approximately equal. For example, the melting point and freezing point of mercury is 234.32 kelvins (−38.83 °C or −37.89 °F). However, certain substances possess differing solid-liquid transition temperatures. For example, agar melts at 85 °C (185 °F) and solidifies from 31 °C to 40 °C (89.6 °F to 104 °F); such direction dependence is known as hysteresis.

The melting point of ice at 1 atmosphere of pressure is very close to 0 °C (32 °F, 273.15 K); this is also known as the ice point. In the presence of nucleating substances the freezing point of water is the same as the melting point, but in the absence of nucleators water cansupercool to −42 °C (−43.6 °F, 231 K) before freezing.

The chemical element with the highest melting point is tungsten, at 3687 K (3414 °C, 6177 °F) making it excellent for use as filaments in light bulbs. The often-cited carbon does not melt at ambient pressure but sublimes at about 4000 K; a liquid phase only exists above pressures of 10 MPa and estimated 4300–4700 K (see Carbon phase diagram).

Tantalum hafnium carbide (Ta4HfC5) is a refractorycompound with a very high melting point of 4215 K (3942 °C, 7128 °F). At the other end of the scale, helium does not freeze at all at normal pressure, even at temperatures very close to absolute zero; pressures over 20 times normal atmospheric pressure are necessary.

Melting point measurements

Many laboratory techniques exist for the determination of melting points. A Kofler bench is a metal strip with a temperature gradient (range from room temperature to 300 °C). Any substance can be placed on a section of the strip revealing its thermal behaviour at the temperature at that point. Differential scanning calorimetry gives information on melting point together with its enthalpy of fusion.

A basic melting point apparatus for the analysis of crystalline solids consists of an oil bath with a transparent window (most basic design: a Thiele tube) and a simple magnifier. The several grains of a solid are placed in a thin glass tube and partially immersed in the oil bath. The oil bath is heated (and stirred) and with the aid of the magnifier (and external light source) melting of the individual crystals at a certain temperature can be observed. In large/small devices, the sample is placed in a heating block, and optical detection is automated.

The measurement can also be made continuously with an operating process. For instance, oil refineries measure the freeze point of diesel fuel online, meaning that the sample is taken from the process and measured automatically. This allows for more frequent measurements as the sample does not have to be manually collected and taken to a remote laboratory.

What is Boiling Point?

The boiling point is the temperature at which the vapour pressure of the liquid is equal to the atmospheric pressure of the liquid and the liquid is converted to vapour. The boiling point of the liquid depends upon the pressure of the surrounding. When the liquid is at high pressure, it has higher boiling point than the boiling point at normal atmospheric pressure.

The boiling point of different liquids is different for a given pressure. In 1982 IUPAC, defined standard boiling point which is the temperature at which liquid boils under the pressure of 1 bar. The boiling point changes with altitude and that’s why when we go to mountain areas i.e. at higher altitudes cooking food takes more time because the pressure decreases and therefore because of this it takes more time in cooking food at hilly areas.